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A modulational perturbation analysis is presented which shows that when a strained 
vortex layer becomes unstable, vorticity concentrates into steady tubular structures 
with finite amplitude, in quantitative agreement with the numerical simulations of 
Lin & Corcos (1984). Elaborated three-dimensional visualizations suggest that this 
process, due to a combination of compression and self-induced rotation of the layer, 
is at the origin of intense and long-lived vortex tubes observed in direct numerical 
simulations of homogeneous turbulence. 

1. Introduction 
Numerical simulations of both stationary (Siggia 1981; Kerr 1985; Ashurst et al. 

1987; She, Jackson & Orszag 1990, 1991; Ruetsch & Maxey 1991, 1992; Vincent & 
Meneguzzi 1991 ; Jimknez et al. 1993) and decaying homogeneous turbulence (Brachet 
1991; Vincent & Meneguzzi 1994) reveal that regions of most intense vorticity appear 
as vortex tubes aligned with the eigenvector of the strain tensor associated with the 
intermediate eigenvalue. Their diameter is estimated as a few Kolmogorov scales or a 
fraction of the Taylor microscale, and their length can be comparable to the integral 
scale. They generally persist during many eddy-turnover times and are thus often 
referred to as coherent structures. They were recently detected in laboratory flows 
by noticing that vorticity concentrations produce local pressure minima (Douady, 
Couder & Brachet 1991). The aim of the present paper is to investigate the dynamical 
processes leading to the formation of such vortex tubes. 

A detailed analysis of the early time dynamics of vortical ideal fluids with initial 
energy concentrated in large scales, was presented by Brachet et al. (1992). Numerical 
simulations by spectral methods in periodic geometry showed that in regions where 
it is strongly amplified, vorticity becomes aligned with the intermediate eigenvector 
of the strain tensor. Those regions take the form of pancakes (idealized as vortex 
layers) whose thickness rapidly decays in time. For a quantitative analysis, the 
minimal layer thickness is conveniently estimated by the width of the analyticity strip 
d ( t )  of the velocity field. This quantity is given by half the logarithmic decrement 
of the energy spectrum, a quantity easily measured in the framework of spectral 
methods (Sulem, Sulem & Frisch 1983). One observes that after a short transient, d ( t )  
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decays exponentially. This is consistent with the observation that the intermediate 
eigenvalue of the strain tensor, which is predominantly positive (Betchov 1956), 
remains bounded, while the two others diverge exponentially. This evolution proceeds 
until 6(t) becomes of the order of a few mesh sizes. Numerical accuracy is then 
lost. Persistence of an exponential decay during arbitrary long times would indicate 
well-posedness in the large for the three-dimensional Euler equation. Drastic changes 
could however occur if vortex layers formed at early times become unstable. This 
possible instability is however too slow to be observed in direct numerical simulations 
of inviscid flows without using spatial resolutions much beyond the possibilities of 
present day computers. 

In $2, we address this question both in the context of viscous and inviscid flows, by 
deriving an asymptotic model for the dynamics of a strained vortex layer that leads 
to vorticity concentrations. In $3, we report on detailed visualizations showing the 
formation of vortex tubes in simulations of freely decaying homogeneous turbulence 
at resolutions up to (256)3 collocation points and Reynolds numbers based on the 
integral scale up to 300. Comparisons with the main assumptions and predictions of 
the model are presented. Scaling properties of the vortex tubes together with their 
spectral signature in fully developed turbulence are also discussed. A brief summary 
of the main results is given in $4. 

2. Dynamics of a strained vortex layer 
In order to interpret the vorticity dynamics observed in direct numerical integrations 

of the Euler equations for boundary-free ideal flows, a local asymptotic analysis was 
presented by Brachet et al. (1992). It assumes that an initial vorticity blob shrinks in 
one direction (the z-direction), while in the other directions the typical scales remain 
of order unity. An approach analogous to an inner expansion for a boundary layer, 
leads to the conclusion that, owing to the incompressibility of the flow, both the 
layer shrinking and the vorticity growth should be exponential in time. Furthermore 
when arguing the sharp variations of the vorticity in the z-direction, variations in x 
and y are totally neglected and the vortex layer reduces to a unidimensional vorticity 
distribution 

subject to a uniform plane strain field 
Q(x, y, z ,  t) = eYfg(zeYf)by , 

U ( x ,  y, z ,  t) = yyb, - yzb, . 

(2.1) 

(2.2) 

Here b,, by,  8, denote unit vectors in the x-, y-, z-directions and y a uniform rate of 
strain. The layer profile g is an arbitrary localized function. The streamwise velocity 
component associated with the layer reads U,(z,t) = f(zeY') with df/d( = g(5). 
Equations (2.1) and (2.2) in fact provide an exact solution of the Euler equations. 
Since vorticity distribution (2.1) is uniform in the streamwise direction, it does not 
generate any self-induced advection. Vortex stretching is due to a uniform plane strain 
which can be viewed as locally modelling the action of external large-scale motions, 
and produces an indefinite shrinking of the layer thickness. In the same context, but 
in the presence of a (kinematic) viscosity v, the problem admits a steady solution, the 
Burgers vortex layer whose thickness 6 scales like (v /y ) ' I2  (Saffman 1992). 

An important question concerns the stability of these strained vortex layers for both 
viscous and inviscid fluids, when subject to streamwise perturbations leading to a self- 
induced velocity. The skbility of the (viscous) Burgers vortex layer was addressed 
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by Lin & Corcos (1984) in the context of free shear flows to explain the formation 
of streamwise vortices in the braid under the action of the strain due to adjacent 
spanwise rolls generated by the Kelvin-Helmholtz instability. Numerical integrations 
showed that a strained vortex layer may be unstable and that vorticity collapses into 
cylindrical vortices with circular cross-section. An asymptotic approach for long-wave 
perturbations (compared to the vortex thickness) was presented by Neu (1984), in the 
limit where the layer distortion is slaved to the vortex strength. Denoting by GO the 
(unperturbed) circulation per unit length (vortex strength), the Burgers vortex layer 
appears to be unstable to infinitesimal perturbations when p 2  = y v / c i  < i. Special 
attention was devoted to the weakly nonlinear regime which is established slightly 
above the stability threshold. The resulting modulation equations admit stationary 
solutions corresponding to vorticity concentrations inside the vortex layer, but these 
solutions were shown to be unstable. A detailed analysis of the initial value problem 
is reported by Majda (1986) and Palais (1988) who proved that when the Burgers 
vortex layer is unstable, the modulation equations are well-posed only for a finite time 
during which vorticity concentrates. Afterwards a singularity occurs, which suggests 
that a more elaborated approach is required. 

In this section, we reformulate the above modulation theory by getting rid of the 
assumption of slaved dynamics for the layer distortion and by including a variation 
of the layer thickness. We determine the linearly most unstable mode in precise 
agreement with the numerical integration of the Orr-Sommerfeld equation done by 
Lin & Corcos (1984). Furthermore, in the nonlinear regime, this approach leads to 
equations for which there is numerical evidence of well-posedness in the large and 
convergence to stationary solutions associated with vorticity concentrations. We also 
address the limit of zero strain and viscosity where the dynamics is governed by the 
Kelvin-Helmholtz instability, and the case of a strained vortex layer in an inviscid 
fluid. 

2.1. The asymptotic equations 

After a simple rescaling, we write the equation of motion of a vortex layer whose 
typical scale of variation L in the x-direction is large compared to its mean thickness 
60 = CL, in the form 

r2w + i(uw)x + ((w - YZ)O)Z = V ( i 2 d x x 0  + dzzw) , (2.3) 

where w = w(x, z, t) denotes the amplitude of the vorticity taken in the y-direction, 
and 

(z - z’)w(x’, z’, t) 
U(X,Z,t) = -- dx‘dz’, 

271 ‘ J J (x - x’)2 + rqZ - z’)2 

dx‘dz‘ 
(x - x’)w(x’, z’, t) 

w(x, z, t) = - 
271 J J (x - x’)2 + p ( z  - z’)2 

(2.4) 

are the components of the velocity field induced by the vortex layer. 
In the limit of small r ,  the self-induced velocity can be expanded as 

sgn(z - z‘){w(x, z‘, t )  - (lz - z‘lhX(x, z‘, t )  

-;i21z - Z ’ ~ ~ O ~ ~ ( X , Z ’ ,  t) + ...} dz’, (2.6) 
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+oo 

W(X,Z,t) = ’/ {qX,Z’,t)+ilZ -z’lox(x,z’,t) 
2 -m 

-‘C2(2 2 - z ’ ) ~ ~ ~ ~ ( x ,  z’, t) + ...} dz‘, (2.7) 

where 

is the Hilbert transform of f ( x ) .  Expansions (2.6), (2.7) were established by Neu (1984) 
using the two-dimensional character of the vortex layer and applying contour inte- 
gration to the x’-variable. A direct proof is also possible. Although significantly 
longer, it easily extends to the fully three-dimensional situation where the layer is also 
modulated in the y-direction. 

From the vortex strength 

o(x,t) = o(x, z ,  t)dz 

and the two first vorticity momenta, 

zo(x, z ,  t)dz, 

z20(x, z ,  t)dz, , a(x, t) = 

we reconstruct the local distortion of the layer 

and its local thickness 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

which together with Q can be viewed as ‘collective coordinates’ of the vortex layer. 

obtain 
Substituting (2.6)-(2.7) into (2.3), multiplying by (1, z ,  z 2 )  and integrating on z, we 

(2.13) 

(2.14) 

(2.15) 

This is a closed system for a , ~  and a which evolves on two timescales. The long 
timescale gives the evolution of the strength 0. The short one corresponds to the early 
exponential shrinking of an inviscid layer. Note that at this order of approximation, 
the non-zero thickness of the vortex layer does not affect the collective dynamics. 

When the layer deformation is assumed to be slaved to the vortex strength, (2.14) 
reduces to 

(2.16) 
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and the nonlinear term in (2.13) becomes 

1 

Y 
(XS, - ixo), = -{o[i(8)2 - oS]x}x 

= -(C 1 2  ox), , (2.17) 

where the last identity is proved in Appendix C of Neu (1984). We thus recover the 
nonlinear backward heat equation (5.5) of Neu (1984) which is usually ill-posed. 

At the level of (2.13)-(2.15), the existence problem remains open. Nevertheless, 
linearization about a layer of strength 00 leads to a dispersion relation for an 
harmonic perturbation e’t+ikx, of the form 

2Y 

c212 + ( y  + C2vk2)I + 002 (5 - i) k2 = 0 (2.18) 

In the long-wave limit (CkGl),  the growth rate scales like the square wavenumber, 
as in the slaved approximation. Short-wave disturbances however do not feel the 
strain: at zero viscosity, the growth rate varies like the wavenumber, as in the usual 
Kelvin-Helmholtz instability. 

In contrast, a 
finite thickness for the vortex layer suppresses the Kelvin-Helmholtz instability for 
perturbations whose wavelength is smaller than a critical value which is of the order 
of the layer thickness and depends on the vorticity profile (Chandrasekhar 1961). In 
order to capture this effect, it is necessary to estimate the O([)-terms denoted F1, F2 

and F3 in (2.13)-(2.15) respectively. They read 

Viscosity is not sufficient to ensure small-scale regularization. 

~1 = i J J sgn(z - z’)(z - z’)20xx(x, z’)w(x, z)dzdz’ 

= ;ax J J sgn(z - z’)(z - z/)2wx(x, z/)o(x, z)dzdz’ , 

F2 = l a ,  11 z(z - z’)o(x, z’)o(x, z)dzdz’ 2 

+g 1 1 Iz - z’Io,(x, z’)o(x, z)dzdz’ , 
2 

F~ = -g J J z I z  -z‘~o,(x,z’)~(x,z)dzdz‘ 
2 

-i J J sgn(z - z’)(z - z’)2wx(x, z’)o(x, z)dzdz’ . 
4 

(2.19) 

(2.20) 

(2.21) 

In general, these integrals cannot be expressed in an exact closed form in terms of o, 
x and a. To estimate them, we expand the vorticity field in the form 

o(x,z,  t )  = o(O)(x, z ,  t )  + Co(l)(x, z, t )  + . . . , (2.22) 

with similar expansions for the collective coordinates. We write do) as a modulation 
of a uniform vortex layer, in the form 

(2.23) 

At early times or in the inviscid limit, the function g is determined by the initial 
conditions, while after the layer thickness has saturated due to viscosity, it is given 
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by the profile 
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(2.24) 

of the Burgers vortex layer. 
Computing LO, and substituting in (2.19)-(2.21), we obtain 

F1 = -5{51(axx - x o x ) 6  + J2~266x}xx + OK2) , 
F2 = 5{J1(O2)xJ - ($4 + J3)O2SX} + 0(Y2) , 
F3 = - 5 5 4 ( 0 x X  - axx)6 - 5 5 5 0 ~ 6 ~  + 0(i2) , 

(2.25) 
(2.26) 

(2.27) 

where, consistently with the order of the approximation, we replaced the leading 
terms of the collective coordinates by these coordinates themselves. The numerical 
coefficients 51, 52, 53, and 5 4  are expressed in terms of the layer profile by 

(2.28) 

(2.30) 

(2.31) 

(2.32) 

Assuming that the layer profile is symmetric (g(5) = g(-l)), we have 52 = J5 = 0. 
The only remaining coefficient is 51. For the Burgers vortex layer, 51 = l / ~ l / ~ .  

At this step, it is convenient to rewrite the dynamic equations using dimensionless 
variables. Let cro denote the typical value of the vortex strength. Using the perturbation 
scale L as the unit length and L/OO as the unit time, and measuring cr, x, a and 6 in 
units of 00, a& aoL2 and L respectively, we obtain 

dg 
d5 

5 4  = ; 1s s g n e  - 5’) (5  - 5’)2g(5),(5’)d5d5’ = -251 > 

55 = 11 5’15 - 5’1S(0@(5’)dtdS’ dg * 

(2.33) 

(2.34) 

1 5 
0. - -cxx - ; cxax  - ixa)x - p{(% - X~X)6}XX 3 ‘ - R  

C2xr = -SX + 5 + p { ( ~ ’ , x ~  - 0~6x} , 

(2.35) 

where 6 is given by (2.12). The parameters R = LOO/V and S = yL/oo respectively 
denote the Reynolds number at the scale of the layer perturbation and the ratio of 
this scale to the internal scale ao/y. In these units, 6 and a are initially of order 5 and 
c2 respectively, while cr and x are of order unity. 

Except when the strain or the viscosity are asymptotically small, we can rewrite 
(2.33)-(2.35) with only two parameters e = < / S  and p = (S/R)’l2, by rescaling t = S?, 
x = (l /S)f,  a = (l/SR)b, 6 = (SR)-’/28. We get (after dropping the tilde symbol) 

(2.36) 2 1 FP 
@t = P oxx - &!ax - i x a ) x  - -{(oxx - x46)xx 9 
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(2.37) 

(2.38) 

EP 

71112 
€ 2 X t  = -x + i08 + -((02),6 - 0 2 6 , )  , 

1 2 E  
2 a ,  = -2a + -x8 + 20 + - -(oxx - 0,x)6 , 

P2 IT112 p 

where 

(2.39) 

The parameter 

p =  ( v y / o ( y  (2.40) 
can be viewed as the inverse Reynolds number at the internal scale. Choosing the 
mean layer thickness 60 = ( v / y ) ' I 2 ,  like in the (unperturbed) Burgers vortex layer, we 
get 

(2.41) 

When, in the limit e e l ,  the layer distortion is slaved to the vortex strength, we 
recover equation (6.22) of Neu (1984), up to the value of a numerical coefficient 
in the O(e)-term. In fact, the order of magnitude of E can be chosen at will, the 
asymptotics only requiring that 

(2.42) 

P 
S2 

€ = - .  

[ = eS = p / s  = (SR)-'l2 = ( e p ) 1 / 2 4 1  . 

2.2. Linear stability analysis 
Linearizing (2.36)-(2.39) about the solution corresponding to the Burgers vortex by 
taking 0 = 1 + s and a = 1 + a with s, x, a<< 1, we get 

(2.43) 

(2.44) 

(2.45) 

2 f P  

2 1 ^  Ep 5 

E2at = -2a + 2s + - 

s - L A  
t - 2 x x x  + P  sxx - - .n1/2xxxx ' 

6 xt = -x + 2s + Z { i S x  - ;ax> , 
2€ 

p.n1/2 x x  * 

The dispersion relation for a perturbation elt+&, is conveniently written in terms of 
the variables A = e2il and IC = Ek, in the form 

(2.46) CL 3 3P2 4 + (2p2 - i).' + -1KI + -7c = 0 
2.n 71112 71 

which depends only on p. Figure 1 displays the real part of the three eigenvalues 
versus IC for p = 0.25. In the long-wave limit (.el), we recover from (2.46) the same 
growth rate A = ($ - p2)7c2, as in the slaved approximation for the leading eigenvalue, 
but also the two other solutions -1 and -2, associated with damped eigenmodes. In 
the short-wave limit ( ~ + l ) ,  (2.46) reduces to 

(2.47) A3 + p27c2A2 + --ic4A 5 P2 + - K  3P2 4 = 0 .  
2.n 71 

The three eigenvalues have the asymptotic form 

, A + = - -  A,  = -5 6 

2 
(2.48) 
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Re (A) 

-1.5 t 1 
\---- 

1 

0 2 4 6 8 10 

FIGURE 1. Real part of the three eigenvalues Re(A) versus K for p = 0.25. 

-38 I . l. . . I -1. J 

ic 

Coming back to the dimensional variables /z = y A  and K = (y/ao)rc, (2.48) reads 

A0 = -g, , V t l I - - - - V V - I  > 
/ 

- \7T v ) I  
(2.49) 

In the limit y -, 0, v -, 0, with the condition that the layer thickness 60 = ( ~ / y ) ' / ~  
remains finite, we get 

(2.50) 

which reproduces the oscillatory behaviour of short-wavelength perturbations of an 
unstrained inviscid vortex layer with finite thickness (Chandrasekhar 1961). 

In the limit of small p, it is convenient to measure the disturbance wavelength and 
the layer thickness with the same unit by defining q = p ~ .  The associated growth rate 
is also rescaled as p = pA. In these units, the growth rate of one of the eigenmodes 
tends to zero with p, while the two others remain finite. They are displayed in figure 
2 for p = 0.005. The three eigenvalues can easily be computed asymptotically. Two 
special points deserve extra attention: (i) one of the eigenmodes which was damped 
at small wavenumber becomes unstable for q > 0.486, (ii) when real, the dominant 
mode satisfies 

(2.51) 

The most unstable mode is thus given by q M  = 0.43 and corresponds to a growth rate 
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0 0.5 1 .o 1.5 2.0 2.5 

P K  

FIGURE 2. Real part of the three rescaled eigenvalues Re(p) versus q for ,u = 0.005. 

p M  = 0.21, in excellent agreement with the numerical solution of the Orr-Sommerfeld 
equation given in figure 16 of Lin & Corcos (1984). The associated perturbation 
wavelength exceeds the layer thickness by a factor of order 15, which validates the 
asymptotics and explains the agreement with the direct linear analysis. The eigenmode 
(ce, ze, a,) scales like (l/p, 1,1/p) or like (c- ' ,  1, c )  when coming back to the physical 
variables, which corresponds to a strong dominance of the vorticity concentration on 
the layer distortion. 

As noted by Lin & Corcos (1984), a significant difference is obtained when the 
layer distortion is assumed to be slaved (Neu 1984). In this case, the growth rate 
is A = rc2(: - p2) - ( p / 2 7 ~ ' / ~ ) 1 ~ 1 ~ .  In the limit p + 0 the most unstable mode 
q M  = pkM = 7 ~ ' / ~ / 3  has a growth rate p~ = PAM = (n/lO8)/p which increases 
linearly with the Reynolds number, instead of saturating at a finite value. 

2.3. The nonlinear dynamics 
In order to investigate the nonlinear dynamics described by (2.36)-(2.39), we have 
integrated these equations in a periodic domain using a Fourier spectral method 
in space and a finite difference scheme for the time stepping. A resolution of 
128 collocation points was retained. When the nonlinear terms are treated by a 
completely explicit scheme, numerical stability prescribes sharp constraints on the 
time step. Indeed, a weakly nonlinear analysis of (2.36)-(2.39) in the slaved limit 
shows the presence of a fourth-order dissipative term ~~o,..,,., in addition to the 
third-order regularizing term coxxx retained in equation (7.1) of Neu (1984). In order 
to relax the most stringent condition on the time step, we resorted to using a semi- 
implicit scheme where terms coxxxx, c ~ , ,  and ca,, are added and subtracted in 
(2.36)-(2.38) respectively. The stabilizing terms are handled implicitly by a Crank- 
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FIGW 3. Vorticity field for the asymptotic model of $2 with e = 0.5 and p = 0.32, at times (from 
top to bottom) t = 5 (contours from 0 to 1.1 by intervals of O.l) ,  t = 15 (contours from 0 to 1.5 by 
intervals of 0.1, t = 25 (contours from 0 to 2.2 by intervals of 0.2) and t = 100 (contours from 0 to 
3 by intervals of 0.3). 

Nicholson scheme, while the unstable ones, together with all the other terms of the 
equations are treated by an explicit third-order Runge-Kutta scheme. This scheme, 
suggested by analysing the slaved limit, allows a significant gain (up to a factor 10) 
on the time step when solving the full system (2.36)-(2.39). 

Fixing the computational domain to be 2n-periodic, we took the same initial data 
o(x,O) = 1 + 0.1 sinkox , x(x ,O)  = &~(x,O)8(x,O) , a(x,O) = 1, and varied p and e. 
This choice of a(x, 0) (and thus of 6(x, 0)) suppresses a possible exponential shrinking 
of the layer thickness, obtained at early time when 6(x,O) is significantly larger than 
its mean equilibrium value. Except when explicitly mentioned, we used ko = 1. 

A main observation is that, in contrast with the slaved limit studied by Neu (1984), 
Majda (1986) and Palais (1988), solutions of (2.36)-(2.39) do not blow up in a finite 
time but relax to a steady state. This is illustrated in figures 3 and 4, obtained for 
e = 0.5 and p = 0.32. Figure 3 shows vorticity contours at times t = 5 , 15 , 25 and 
100 when the asymptotic steady state has been reached. The contours are obtained by 
reconstructing the vortex layer from the collective coordinates o, q, 6 using (2.23)- 
(2.24). The distortion of the initial vortex layer and the vorticity concentration into 
a vortex tube satisfactorily reproduces the results of direct numerical integration of 
(2.3), presented by Lin & Corcos (1984). Figure 4 gives the profiles of the collective 
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-1 
0 20 40 60 80 100 120 

X 

FIGURE 4. Steady state for the vortex strength cr(x), the layer deformation ~ ( x )  and the layer 
thickness 6(x) for the same conditions as in figure 3, reached at t = 100. 

coordinates at the final time (the x-axis is labelled by grid points). In order to observe 
the influence of the parameter p, we also performed a run with E = 0.5 and p = 0.25. 
In addition to the main vorticity concentration, a weaker peak appears and amplifies 
for a while, after which it tends to relax. Figure 5(a )  shows the profiles of 0 , v]  and 
6 close to the time when the secondary peak reaches its maximum, while figure 5(b) 
displays the same quantities at the latest time of the simulation. Later on, gradients 
become too sharp for the resolution we used. The experience we got from other 
simulations nevertheless suggests that a simple structure with large gradients will 
eventually emerge. Stable solutions displaying several maxima may however exist. An 
example was obtained numerically for ko = 3 with p = 0.2 and .e = 0.5. It follows 
that the steady state reached for given values of E and p may depend on the initial 
conditions. The competition between vorticity structures with the same sign often 
leads (although not necessarily) to the emergence of a single tube. 

Several vorticity concentrations may also develop when decreasing the value of E .  

We performed a simulation with p = 0.32 and E = 0.1. Figure 6 shows vorticity 
contours at times t = 1, 2.5, 2.8 and 3.3, while figure 7 displays the profiles of 0, v]  

and 6 at the final time ( t  = 3.3) of the computation. During the period of integration, 
several vorticity concentrations are visible. At the latest time, secondary peaks are still 
growing. However, owing to the formation of very sharp gradients, the integration 
cannot be carried over longer times without a dramatic increase of space and time 
resolutions. A comprehensive parametric study of (2.36)-(2.39), although feasible, 
would be very costly without the development of specific algorithms able to cope 
with the stiffness of the asymptotic equations. The present results nevertheless clearly 
display vorticity concentrations within strained vortex layers and the formation of 
vortex tubes. 
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FIGURE 5. Vortex strength o(x), layer deformation ~ ( x )  and layer thickness 6(x) for E = 0.5 
and p = 0.25: (a) at  a time t = 12 close to the maximum intensity of the secondary vorticity 
concentration; ( b )  at  the latest time t = 21 of the simulation. 

2.4. The limit of zero strain and viscosity 

In the formulation (2.33)-(2.35), the collective coordinate formalism also enables us 
to address the limit of vanishing strain and viscosity where the layer dynamics is 
governed by the self-distorsion induced by the Kelvin-Helmholtz instability. In the 
framework of long-wave asymptotics, the limit S + 0 also requires R + 00 in order 
to preserve the condition < = ( RS)-'I2 4 1. 
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FIGURE 6. Vorticity contours for the asymptotic model with e = 0.1 and p = 0.32 at times (from 
top to bottom) t = 1 (contours from 0 to 1.1 by intervals of O.l), t = 2.5 (contours from 0 to 1.6 by 
intervals of O.l) ,  t = 2.8 (contours from 0 to 2.4 by intervals of 0.2) and t = 3.3 (contours from 0 to 
3.3 by intervals of 0.3). 

60 80 100 120 
-1 

0 20 40 
X 

FIGURE 7. Vortex strength ~ ( x ) ,  layer deformation q ( x )  and layer thickness 6(x) at the latest time 
t = 3.3 of the simulation for the same run as in figure. 6. 

A numerical integration was performed with the initial conditions CJ = 1 f0.01 sin x,  
x = 0 and 6 = 1. This prescribes [ = & / L  = 1/2n w 0.16. Figure 8 shows 
the collective coordinates at the latest reliable time t = 0.9 of the simulation. The 
layer distorsion is clearly the dominant process in contrast with the case where S is 
of order unity. Figure 9 which shows the layer deformation versus the circulation 
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X 

FIGURE 8. Vortex strength a(x), layer deformation q(x) and layer thickness 6(x) for 
S = 0, R = 00, < = 0.16 at  t = 0.9 

FIGURE 9. 
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deformation versus the circulation r for the same situation 
r 

as figure 8. 

r ( x ,  t )  = ~ ( x ’ ,  t)dx’, illustrates the tendency to form a cusp singularity in the limit 
of an infinitely thin layer, (Meiron, Baker & Orszag 1982). The later evolution, as 
observed e.g. by Baker & Shelley (1990), is outside the scope of the present formalism. 
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2.5. The dynamics of a strained vortex in the inviscid limit 
The equations of motion are given by (2.33)-(2.35) with 1/R = 0. In this regime, a 
dominant effect is the exponential shrinking of the layer thickness, which limits the 
numerical integration to short times. The difficulty is however easily overcome by 
using a time-dependent rescaling in the form 5 = eSrx, z = (eSf - l)/S, together with 
a ( x , t )  = Z(t,z), ~ ( x , t )  = e-StX(t,7), a(x , t )  = e-2SrA(t,z), s ( x , t )  = e-stA(t,7). The 
equations become 
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= X i  + 251c(ZXt - ZtX)A , 

(2.53) 

(2.54) 

where the parameter J1 is defined in (2.28) and depends on the initial profile g 
of the vortex layer. Providing the second term on the left-hand side becomes 
negligible for long enough times, we recover the system studied in $2.4 up to the time- 
dependent rescaling of the variables. When coming back to the primitive variables, 
the amplitude of the layer deformation is strongly reduced. Furthermore, the scale 
of the perturbation in the x-direction and the layer thickness display similar scalings 
in time. It follows that the aspect ratio of the vortex structure is preserved and that 
the formation of quasi-circular tubes is not expected. This leads one to conclude that 
viscosity is an essential ingredient in the scenario of tube formation discussed in this 
paper. 

3. Vortex tubes in homogeneous turbulence 

In this section we analyse the development of intense vorticity structures in a nu- 
merical integration of the Naviers-Stokes equations for decaying turbulence. Periodic 
boundary conditions are assumed and a pseudo-spectral method with a resolution 
of (256)3 grid points is used. Random initial conditions with an energy spectrum 
(defined by averaging half the square Fourier transform of the velocity field on a 
spectral shell of unit width around the sphere of radius k) Eo(k) = 0.03k2e-(k/b)* 
peaked at the wavenumber ko = 1, are chosen. They are the same as those used in 
one of the inviscid simulations presented in Brachet et al. (1992). The initial Reynolds 
number Re = u&/v is approximately 300. Here the r.m.s. velocity ~0 is defined as 
ug = J E(k)dk k: 0.04, the integral scale as lo = (71/2ug) Jk-'E(k)dk k: 1.5, and the 
viscosity is v = 

Figure 10 provides the main characteristic times of the run by displaying the 
temporal evolution of ( a )  the total energy E(t ) ,  ( b )  the enstrophy (mean square 
vorticity) Q ( t ) ,  together with ( c )  the logarithmic decrement 8 ( t )  and ( d )  the algebraic 
prefactor n(t)  obtained by fitting at each instant of time, the computed energy 
spectrum by a function of the form c(t)kn(t)e-2s(r)k. In order to check the stability of 
the fit, three ranges of wavenumbers 5 < k < 107, 5 < k < 117 and 5 < k < 127 
are considered. At the time t k: 10.5 when the enstrophy and thus the energy 
dissipation reach their maxima, the ratio of the integral scale to the Taylor microscale 
il = (15/2)1/2u,$2-1/2 is about 2.5 and the ratio of the Taylor microscale to the 

3.1. Visualization of vortex tubes in direct numerical simulations 
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FIGURE 10. Temporal evolution of characteristic quantities for the turbulence numerical simulation 
of $3. ( a )  Total energy E ( t ) ;  ( b )  total enstrophy Q ( t ) ;  (c) logarithmic decrement 6 ( t ) ;  ( d )  algebraic 
prefactor n ( t ) .  For curves (c) and (d), the wavenumber ranges of fit are 5-107 (solid line), 5-117 
(long dashed line) and 5-127 (long-short dashed line) 

Kolmogorov scale q = 2-i/4v1’2Q-i/4 approximatively 15.6. Note that in decaying 
turbulence, the Kolmogorov scale is not easily interpreted and a better characteristic 
small scale is provided by the logarithmic decrement d(t) which displays several 
regimes. An early exponential decay associated with the almost inviscid regime, 
persists up to t = 1.2. This decay is then slowed down by viscosity, especially after 
t = 2 when the enstrophy approaches its first inflection point. Herring & Kerr (1993) 
noted that, at this stage, the skewness reached its maximum. Between t = 6 and t = 9, 
d(t) is almost constant. Later on, it increases slowly because of the decrease of the 
Reynolds number. At its minimum, d ( t )  is about twice the mesh size h = 2 ~ / 2 5 6 ,  
which ensures that the flow is fully resolved during the whole simulation. Although 
no inertial range is visible by inspection of the energy spectra plotted in figure 11 at 
times t = 0.8, 2.6, 6.8 and 16, the algebraic prefactor n(t)  is meaningful. Its behaviour 
is different from that of the inviscid flow displayed in figure l l(b) of Brachet et al. 
(1992). While at zero viscosity, n(t)  shows a tendency to saturate at a value close 
to -4, in the viscous case, it increases rapidly, reaching a value close to -2 at time 
t = 3. This value, associated with the presence of vortex layers whose thickness has 
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FIGURE 11. Energy spectra at times t=0.8, 2.6, 6.8 and 16(a-d). 

saturated under the effect of viscosity, is preserved until t = 6. Later on, n(t) grows 
slowly, until t = 14. Afterwards, it remains mostly constant during several eddy 
turnover times, at a value between -1.45 and -1.6 depending on the fit range, but 
always slightly in excess of the Kolmogorov exponent. When the run is interrupted 
at t = 16, almost two thirds of the total energy has been dissipated. 

Visualizations in physical space were performed, using the 'Interactive Conic Flight 
Simulator' of Angilella, Astruc & Vincent (1993). The colour code is chosen such 
that blue, green, yellow, red and purple correspond to increasing values of the field 
amplitude. Figure 12 shows snapshots of the vorticity field (within a sub-cube of 
453 grid points corresponding roughly to the integral scale) about a vortex layer 
formed by early time shrinking of a vortex blob. Two points of view are presented. 
Overviews of the structure are shown on the left-hand side and cross-sections on the 
right-hand side, at times t = 1.6, t = 2 and t = 2.6. We observe a local intensification 
of the vorticity (by a factor 5 )  leading to a vortex tube. Furthermore, as seen on the 
cross-section, the layer rotates and takes a characteristic S-shape. Note in particular 
the disappearance of the layer near the tube. A similar evolution was observed 
by Ruetsch & Maxey (1992) in stationary turbulence, using a resolution of 963 grid 
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FIGURE 12. Overviews (right-hand side) and cross-sections (left-hand side) of a vortex layer formed 
at early time. The formation of a vortex tube embedded in the vortex layer is visible. 

points (see in particular their figure 9a). Figure 13 displays the evolution of three 
nearby vortex layers which appear later in time. One of them is stable. For the second 
one, vorticity concentration starts around t = 3.4 but is rapidly inhibited and is no 
longer visible at t = 4. At this time, the third vortex layer displays a strong vorticity 
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FIGURE 13. Overviews of vortex layer formed at  a later time showing vorticity concentration and 
roll-up of the vortex layer after an intense vortex tube has been formed. 

concentration. At t = 5,  a vortex tube has already been formed. It induces a velocity 
field which advects the surrounding vortex layers, rolling them around the tube. Such 
a roll-up of the sheet around a vortex core is reminiscent of the strained spiral vortices 
considered by Lundgren (1982, 1993). Pictures at later times show the persistence of 
these dynamics. Here, vorticity concentration corresponds to an amplification by a 
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factor 3 to 4, comparable to that obtained in the asymptotic model. Note that around 
t = 6.2, a second vortex tube has been formed. 

3.2. Possible mechanisms for vortex tube formation 

From the above observations, we can argue that intense vortex tubes are produced by 
a concentration of vorticity within vortex layers which significantly roll up only after 
tubes have been formed. At any given time there is coexistence of both vortex tubes 
and vortex sheets, the former corresponding to the most intense vorticity structures, the 
latter being associated with moderate values of the vorticity, but still larger than the 
r.m.s. amplitude (She et al. 1991). As shown numerically by Tanaka & Kida (1993), 
oiice tubes have been formed, they can be identified as regions of strong vortic- 
ity but moderate strain, while in persistent vortex layers, strain and vorticity are 
both large. As noted by Kerr (1985), Brachet (1991), Kida & Ohkitani (1992) and 
Vincent & Meneguzzi (1994), the local dissipation (proportional to the square strain 
tensor) is especially strong not within the vortex tubes but rather in their neighbour- 
hood. Tubes create regions of important shear at their periphery and, as noticed 
by Ruetsch & Maxey (1991), this shear is even more intense when strain fields of 
neighbouring such structures overlap. Although tubes can be viewed as rare events 
occupying a very small fraction of the total volume, it has been argued, on the basis 
of a laboratory experiments where polymers are used to inhibit tube formation, that 
these structures contribute significantly (although indirectly) to energy dissipation 
when they break down (Bonn et al. 1993). 

In the context of the model discussed in 92, tube formation is related to the presence 
of a constant and uniform strain which creates vortex layers and induces vorticity 
concentration. In order to test this assumption, we display in figure 14 snapshots 
of regions of intense vorticity (arrows) together with iso-surfaces of the intermediate 
eigenvalue 12 (in blue) of the strain tensor Sij. Since vorticity is aligned with the 
intermediate eigenvector of the strain tensor, maps of the associated eigenvalue 
correspond with that of oiSijoj shown in Ruetsch & Maxey (1992). This eigenvalue 
22 also corresponds to leading order with the parameter y introduced in the model of 
92. Figure 14 is for a run performed at a resolution of 1803 grid points and a Reynolds 
number Re w 250. The dynamics is very analogous to that presented in 93.1. On the 
left-hand side of the figure, the iso-surfaces correspond to about 2/3 of the maximum 
of 22 while the ratio is about 1/2 on the right-hand-side figures. Three different 
times are presented. At the early time, the vortex layer is only weakly perturbed. 
The eigenvalue 12 remains constant along the directions parallel to the vortex layer 
and varies only slowly in the transverse direction. This configuration is still visible at 
intermediate time when vorticity begins to concentrate. At the latest time, when the 
tube is intense, the behaviour of the eignevalue 22 has significantly changed. At this 
time, the asymptotics of the model (which allowed us to identify A2 and y )  breaks 
down. The dynamics can then be described as that of a vortex tube subject to an 
almost radial uniform strain, as considered by Moffatt, Kida & Ohkitani (1994) in 
the limit of large Reynolds numbers. These authors showed that the structure of the 
vortex tube is mostly independent of the strain parameters and that regions of large 
vorticity and large dissipation do not overlap. These properties could explain the 
persistence of vortex tubes in turbulent flows. 

There is little doubt that formation of vortex sheets in incompressible turbu- 
lence requires a local strain. Nevertheless, after a layer has been formed, vorticity 
concentration can also develop in the absence of an external strain as shown by 
Baker & Shelley (1990). Indeed, in the strongly nonlinear regime, a finite-width vor- 
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tex layer, when significantly distorted, generates a strain in the plane of the shear 
flow associated to the vortex layer. A combination of a transverse compression with 
the self-induced rotation due to the finite width of the layer produces a converging 
spanwise velocity, leading to vorticity concentration. The analogy between this process 
and that discussed in $2 explains the similarity between the observed focusings (figure 
12(b) of Baker & Shelley 1990 and figures 5 and 7 of the present paper). Nevertheless, 
the presence of an external strain similar to that of $2 can be inferred from numerical 
simulations of incompressible turbulence where tubes are seen to lengthen (Vincent & 
Meneguzzi 1994) for a while after their formation. Furthermore, the strongest tubes, 
which sometimes reach a significant fraction of the integral scale, usually result from 
the merging of previously smaller parallel tubes originating from the same shear zone. 

Note that in supersonic turbulence, vortex layers can also appear as slip surfaces 
behind shock interactions with no external strain. Such layers are also observed to 
form tubes, that are often subject to kink instabilities (Porter, Pouquet & Woodward 
1994). 

3.3. Scaling properties of the vortex tubes in fully developed turbulence 
We address here some properties of vortex tubes in stationary high Reynolds number 
turbulence. The model discussed in $2 involves three quantities, L, GO, and y that 
have to be related to turbulence characteristics. An important question concerns 
the scaling of the layer thickness or of the tube diameter 60 (which within both 
the model and the simulations appears to be thicker) with the large-scale Reynolds 
number Re. Using the Kolmogorov scaling law relating the typical velocity difference 
uo at the integral scale lo' to the velocity difference GO at the scale L of the layer 
perturbation, we get 00 k: and y k: ( ~ ~ / l ~ ) ( L / l ~ ) - ~ / ~ .  It follows that the 
diameter 60 = ( ~ / y ) ' / ~  of the resulting tube scales like loRe-1/2(L/lo)1/3.  Such a tube 
will be elongated by the strain, until it reaches a length of order L. For tubes 
formed in one step from a vortex layer, we thus predict a relation between the length 
and the diameter, which reproduces qualitatively the observation that in laboratory 
turbulence, long tubes are thicker than short ones (Cadot, Douady & Couder 1994, 
where similar scaling arguments have been proposed independently). Taking L to 
be the Taylor microscale AT (the vorticity correlation length), we get 60 k: l ~ R e - ~ / ~ ,  
which is larger than the Kolmogorov scale ld = l ~ R e - ~ / ~ ,  obtained when choosing 
GO k: uo and y k: o', the enstrophy square root, as suggested by JimCnez et al. (1993). 
Although the Reynolds numbers achieved in the present numerical simulations of 
turbulence are hardly sufficient to precisely characterize the scaling properties of the 
transverse dimensions of layers and tubes with Re, the diameters of the tube cores 
seem to be intermediate between the Taylor microscale and the Kolmogorov scale 
(Jimenez 1992). Furthermore in a recent paper, Novikov (1993) suggests that the 
scale relevant for vorticity dynamics is l ~ R e - ~ / "  rather than the Taylor microscale 
AT k: loRe-1/2. This leads to an even larger value 60 k: l ~ R e - ~ / ~ .  Much longer tubes 
( L  N lo )  with a diameter 6 - 4q were observed in Jimenez et al. (1993). As suggested 
by Jimtnez & Wray (1994), such structures, along which the local strain is observed 
to change sign on a Taylor microscale, could result from the coalescence of shorter 
tubes formed previously. 

Note that the scaling laws are probably different in the context of freely decaying 
turbulence. Vortex layers and tubes have in this case a strong memory of the initial 
conditions and it is then natural to set GO k: UO, L k: 10 and y k: uo/lo. A similar 
situation also occurs in laboratory turbulence generated by a large-scale shear flow 
(Douady et al. 1991). The tube diameters then approach the Taylor microscale A T .  
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t = 2.6 

t = 3.0 

t = 3.4 
FIGURE 14. Snapshots of vorticity field and iso-surfaces (at about 2/3 and 1/2 of the maximum 
on the left- and right-hand sides respectively) of the intermediate eigenvalue of the symmetrized 
velocity gradient matrix at three different times. 

Coming back to the case of stationary turbulence and taking L NN AT, we also obtain 
S NN 1, R NN Re'/3 and 5 = E. w ,u = More generally, the Reynolds number 
p-' of a tube of length L is expected to scale like Re'12(L/lo)*13. The slow variation 
of ,up' with Re indicates that the turbulence Reynolds number should be very large 
before tubes can become unstable. As a consequence, in numerical simulations, vortex 
breakdowns were observed only rarely (Pumir 1994). In contrast, in the experiment 
performed by Douady et al. (1991) where the Reynolds number reaches 80 000, vortex 
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tubes usually appear as rather straight lines but develop helical distortions similar 
to kinks, which lead to their disruption. To study the question of tube stability, 
the basic structure can be the axisymmetric Burgers vortex tubes. When subject 
to an axisymmetric strain, Burgers vortex tubes are stable against two-dimensional 
perturbations but their behaviour against three-dimensional perturbations is unknown 
(Saffman 1992). 

3.4. Spectral signature of vortex tubes 
The presence of vortex tubes should affect the spectral dynamics of homogeneous 
turbulence. It is easily checked that the Fourier transform of the velocity field u(k) 
created by a (Burgers) vortex tube behaves like l /k  as long as the scale k-' is large 
compared to the tube radius and small compared to its length. The associated energy 
spectrum (obtained by averaging il~(k)1~ on a two-dimensional shell of radius k ) ,  
thus scales like l / k  (Townsend 1951). Such an energy spectrum was observed by 
Porter, Pouquet & Woodward (1992, 1994) in numerical simulations of compressible 
turbulence during the late post-supersonic regime, when the compressibility effects 
are already mild and a great number of vortex tubes are visible in physical space. 
The computations were done using the so-called Piecewise Parabolic Method (PPM), 
an algorithm for numerical modelling of the small-scale dissipation which enables 
one to simulate highly turbulent flows. With a resolution of 2563 grid points, 
these authors observed an extended spectral range where the energy spectrum of 
the solenoidal velocity varies as k - l .  With a resolution of 5123 which can be 
viewed as corresponding to a higher effective Reynolds number, a k-5/3 spectrum 
develops, followed at larger wavenumbers by a k-' range, the transition occurring 
close to the Taylor wavenumber. Although the numerical dissipation of the PPM 
may be significantly different from the molecular dissipation of the Navier-S tokes 
equations, the global properties of the vortex tubes which are mostly non-dissipative 
structures, should be preserved by this method. The Reynolds numbers of a few 
hundreds presently reached in direct numerical simulations of the Navier-Stokes 
equations are not large enough to make similar observations. However as reported by 
Jimenez et al. (1993), the local energy spectrum in the regions of the flow including 
vortex tubes display a k-' behaviour, while the global spectrum is consistent with 
k-5/3 .  In this context, it is noticeable that for several numerical simulations (see figure 
10(d) and also Vincent & Meneguzzi 1991), precise fits of the (global) energy spectrum 
in a regime consistent with the Kolmogorov analysis, lead to an exponent slightly 
shallower than -5/3, while most of the predictions for the intermittency corrections 
to the energy cascade, and also the effect of viscous dissipation would tend to steepen 
the spectrum. Similar evidence was noticed in the context of laboratory turbulence. By 
analysing data from Gagne & Castaing (1991) where the Taylor microscale Reynolds 
number ranges from 130 to 130 OOO, She & Jackson (1993) obtained an empirical 
universal fit for the energy spectrum of the form 

E ( k )  = E(k,) [ ( t)-5'3 + 0.8 (t,'] e-@lkP, 

where k, is defined as the peak wavenumber for the dissipation spectrum k2E(k) .  
Figure 2 of She & Jackson (1993) clearly shows that deviation from Kolmogorov k-5/3 
spectrum occurs at wavenumbers clearly smaller than k, (roughly by a factor five). 
If, as suggested by the model, the energy transfer in this range results from vorticity 
concentration into tubes within vortex layers, as a consequence of a large-scale 
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instability, it should be viewed as non-local. The question arises of the asymptotic 
behaviour of this range if, as expected, vortex tubes become unstable when the 
Reynolds number becomes large enough. 

4. Summary 
We have presented an asymptotic analysis for the nonlinear dynamics of a vortex 

layer subject to an external plane strain. This approach leads to a system of partial 
differential equations in one space variable for the strength, the distortion and the 
thickness of the layer. Their numerical integration shows that vorticity concentrates 
into stationary structures corresponding to vortex tubes. We also displayed detailed 
visualizations of regions of intense vorticity in numerical simulations of freely decaying 
turbulence. Sophisticated three-dimensional graphic software led us to a precise 
description of the small-scale dynamics which suggests that vortex tubes observed 
in incompressible homogeneous turbulence result from concentration within a vortex 
layer formed at earlier time. A detailed investigation shows that both vorticity and 
total strain are satisfactorily reproduced by the asymptotic model. Layer roll-up is also 
visible in numerical simulations, but this is mainly a secondary process, corresponding 
to a vortex layer wrapping around an intense vortex core. 

Our model remains valid at large Reynolds numbers. It predicts that, in this regime, 
the diameters of the vortex tubes should significantly exceed the Kolmogorov scale. 
In a slightly modified form, the model can address the inviscid limit leading to the 
conclusion that viscosity, which prescribes a finite thickness for the vortex layers, is 
an essential ingredient for vortex tube formation. In fact the tubes probably become 
unstable at large enough Reynolds numbers as suggested by laboratory experiments of  
Douady et al. (1991) where helical instabilities yielding tube disruptions are observed. 
Development of such helical instabilities may contribute to a significant stirring of 
the flow at much larger scales. 

We thank Y. Couder, Y. Gagne, J. Jimknez, H.K. Moffatt and the referees for 
useful discussions and comments. Turbulence numerical simulations were performed 
on the CRAY2 of the Centre de Calcul Vectoriel pour la Recherche (Palaiseau) 
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the CRAY-YMP of the Institut Mediterranken de Technologie (Marseille) thanks to 
computer time provided by the Rkgion Provence C6te d’Azur. This work benefited 
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